思维导图法学数学——二元一次方程组,知识点及配套练习全掌握!(下)

网友投稿 2019-05-26 14:17

https://cdn.china-scratch.com/timg/190528/141K04608-0.gif

https://cdn.china-scratch.com/timg/190528/141K1N28-1.jpghttps://cdn.china-scratch.com/timg/190528/141K1N28-1.jpghttps://cdn.china-scratch.com/timg/190528/141K1N28-1.jpg

图解解题方法

https://cdn.china-scratch.com/timg/190528/141K1C96-4.jpg

图解典型难题

https://cdn.china-scratch.com/timg/190528/141K152C-5.jpg

图解思路

 

https://cdn.china-scratch.com/timg/190528/141K255R-6.jpg

规范解答

由①+②+③得(m+2)(x+y+z)=3(m+2).

当m+2=0,即m=-2时,0·(x+y+g)=3·0,此时方程组的解不能唯一确定;

当m≠-2时,得到x+y+z=3.④

由①-④得(m-1)x=m-2,

由②-④得(m-1)y=m-1,

由③-④得(m-1)z=m.

当m≠1时,方程组的解为https://cdn.china-scratch.com/timg/190528/141K24A5-7.jpg

综上所述,当m=-2时,方程组的解不唯一确定.

当m=1时,方程组无解.

当m≠-1且m≠-2时,方程组的解为https://cdn.china-scratch.com/timg/190528/141K24A5-7.jpg.

解后反思

解含有字母系数的方程组同解含有字母系数的方程一样,在字母两边同时乘以或除以字需要弄清字母的取值范围,进行分类讨论.

触类旁通

1.已知方程组https://cdn.china-scratch.com/timg/190528/141K24049-9.jpg和方程组https://cdn.china-scratch.com/timg/190528/141K23143-10.jpg的解相同,求(2a+b)2012的值.

2.已知关于x、y的二元一次方程组https://cdn.china-scratch.com/timg/190528/141K21035-11.jpg的解互为相反数,求x、y、a的值.

3.已知关于x、y的方程组https://cdn.china-scratch.com/timg/190528/141K21Z3-12.jpg的解满足x>0,y>0,求实数a的取值范围.

5.3 一次方程组的应用

https://cdn.china-scratch.com/timg/190528/141K26406-13.jpg

图解思路

https://cdn.china-scratch.com/timg/190528/141K32N8-14.jpg

规范解答

设甲袋原来有水果xkg,乙袋原来有水果ykg.

由题意,列方程组https://cdn.china-scratch.com/timg/190528/141K315I-15.jpg

解得https://cdn.china-scratch.com/timg/190528/141K32649-16.jpg

因此,x+y=48+36=84.

答:这堆水果原来共有84kg

解后反思

列方程组解决实际问题,设几个未知数就应当相应地找几个相等关系,与一次方程的应用类似,此类问题的关键仍然是找准等量关系,根据等量关系列方程组解决应用问题.

本题设甲袋原来有水果x千克,乙袋原来有水果y千克,因为设两个未知数,故需要两个等量关系

(1)甲袋中取走https://cdn.china-scratch.com/timg/190528/141K34621-17.jpg剩下的=乙袋中取走12kg剩下的,根据等量关系可得方程x-https://cdn.china-scratch.com/timg/190528/141K34621-17.jpgx=y-12;

(2)乙袋取走12kg后余下的一半=乙袋原来的https://cdn.china-scratch.com/timg/190528/141K3L47-19.jpg,根据等量关系可得方程https://cdn.china-scratch.com/timg/190528/141K34621-17.jpg(y-12)=https://cdn.china-scratch.com/timg/190528/141K3L47-19.jpgy,联立两个方程,解出x,y,进面求出总质量x+y.

https://cdn.china-scratch.com/timg/190528/141K3ND-22.jpg

图解思路

https://cdn.china-scratch.com/timg/190528/141K44009-23.jpg

规范解答

 

https://cdn.china-scratch.com/timg/190528/141K4N13-24.jpg

如图,设甲班学生从学校A乘汽车出发至E处下车步行,甲班学生乘车行了akm,空车返回至C处,乙班同学于C处上车,此时乙班学生已步行了bkm.

根据题意列方程组,可得https://cdn.china-scratch.com/timg/190528/141K42430-25.jpg.

解得https://cdn.china-scratch.com/timg/190528/141K42222-26.jpg

https://cdn.china-scratch.com/timg/190528/141K42K7-27.jpg

答:他们至少需要https://cdn.china-scratch.com/timg/190528/141K52623-28.jpg才能到达.

解后反思

本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题口给出的条件,找出合适的等量关系,列出方程组,再求解,本题根据题意可画出草图,可以较快,较清晰地列出所需等量关系.

根据题意可让甲班学生从学校A出发乘车akm至某处下车步行,再让车空车返回至某处,乙班同学在此处上车,此处距离学校bkm,

根据相等关系1:车接到乙班同学的时间(车送甲班至E处,再开回到C处与乙班相遇)=乙班同学步行的时间:相等关系2:甲班步行时间车接乙班返回的时间+乙班坐车到达B的时间,列出两个方程,求方程组的解即可,最后根据时间=路程/速度的关系式,即可得他们至少需要多长时间才能到达.

触类旁通

1.小明的妈妈在菜市场买回3千克萝卜、2千克排骨,准备做萝卜排骨汤,妈妈:“今天买这两样菜共花了45元,上月买同质量的这两样菜只要36元”爸爸:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜,排骨的单价(单位;元/千克).

2. 甲种矿石含铁54%,乙种矿石含铁36%,将两种矿石若于吨进行混合得到含铁48%的矿石,如果混合时甲种矿石比原来少取121,乙种矿石比原来多取10t,那么混合后的矿石含铁45%,则原来混合时,两种矿石各取多少吨?

3.某火车站在检票前若干分钟就开始排队,排队人数按一定的速度增加,如果开放一个检票口,则要40min检票口前的队伍才能消失,如果同时开放两个检票口,则16min队伍就消失了,设检票的速度是一定的,如果同时开放三个检票口,要多长时问检票口前的队伍才会消失.

4.有一片牧场,草每天都在匀速生长(草每天增长量相等).如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天可以吃完牧草,设每头牛吃草量是相等的,如果放牧16头牛,几天可以吃完牧草.

5.某人乘汽车,他看到第一块里程碑上写看一个两位数(单位:km);经过1h,他看到第二块程碑写的两位数恰好是第一块里程碑上的数字互换了;又经过1h,他看到第三块里程碑上写看一个三位数,这个三位数恰好是第一块里程碑上的两位数中间加上一个0,则汽车的速度是多少?


参考书:《图解名校初中数学压轴题》,彭林[著],上海社会科学院出版社。

--end--

声明:本文章由网友投稿作为教育分享用途,如有侵权原作者可通过邮件及时和我们联系删除:freemanzk@qq.com