Curr Treat Options Cardiovasc Med|关联健康技术在心血管疾病防治中的应用(附源文)

网友投稿 2019-05-17 09:51

Connected Health Technology for Cardiovascular Disease Prevention and Management

https://cdn.china-scratch.com/timg/190519/09512931P-0.jpgCurr Treat Options Cardiovasc Med State-of-the-Art Informatics (J Singh, Section Editor)
June 01, 2019: 21 (6), 29
10.1007/s11936-019-0729-0
本文由“天纳”临床学术信息人工智能系统自动翻译
点击文末“阅读原文”下载本文PDF

Purpose of the review

Advances in computing power and wireless technologies have reshaped our approach to patient monitoring. Medical grade sensors and apps that were once restricted to hospitals and specialized clinic are now widely available. Here, we review the current evidence supporting the use of connected health technologies for the prevention and management of cardiovascular disease in an effort to highlight gaps and future opportunities for innovation.计算能力和无线技术的进步改变了我们对患者监测的方法。曾经被限制在医院和专业诊所使用的医用级传感器和应用程序现在被广泛使用。在这里,我们回顾了支持使用相关健康技术预防和管理心血管疾病的现有证据,以强调差距和未来的创新机会。

Recent findings

Initial studies in connected health for cardiovascular disease prevention and management focused primarily on activity tracking and blood pressure monitoring but have since expanded to include a full panoply of novel sensors and pioneering smartphone apps with targeted interventions in diet, lipid management and risk assessment, smoking cessation, cardiac rehabilitation, heart failure, and arrhythmias. While outfitting patients with sensors and devices alone is infrequently a lasting solution, monitoring programs that include personalized insights based on patient-level data are more likely to lead to improved outcomes. Advances in this space have been driven by patients and researchers while healthcare systems remain slow to fully integrate and adequately adapt these new technologies into their workflows.针对心血管疾病预防和管理的关联健康的初步研究主要集中在活动跟踪和血压监测,但此后已扩大到包括一整套新型传感器和先进的智能手机应用程序,在饮食、血脂管理和风险评估、戒烟等方面进行有针对性的干预。心脏康复、心力衰竭和心律失常。虽然单独为患者配备传感器和设备很少是一个持久的解决方案,但是基于患者级别数据的个性化见解监控程序更有可能导致改善的结果。这一领域的进步是由患者和研究人员推动的,而医疗保健系统仍然缓慢地将这些新技术完全集成并充分适应其工作流程。

Summary

Cardiovascular disease prevention and management continue to be key focus areas for clinicians and researchers in the connected health space. Exciting progress has been made though studies continue to suffer from small sample size and limited follow-up. Efforts that combine home patient monitoring, engagement, and personalized feedback are the most promising. Ultimately, combining patient-level ambulatory sensor data, electronic health records, and genomics using machine learning analytics will bring precision medicine closer to reality.心血管疾病预防和管理仍然是相关卫生领域临床医师和研究人员的重点领域。尽管研究继续受到样本量小和随访受限的影响,但取得了令人振奋的进展。结合家庭患者监测、参与和个性化反馈的努力是最有希望的。最终,结合患者水平的动态传感器数据、电子健康记录和使用机器学习分析的基因组学,将使精确医学更接近现实。

NotesFunding informationShannon Wongvibulsin is supported by the Johns Hopkins School of Medicine Medical Scientist Training Program (National Institutes of Health: Institutional Predoctoral Training Grant - T32), National Institutes of Health: Ruth L. Kirschstein Individual Predoctoral NRSA for MD/PhD: F30 Training Grant, and the Johns Hopkins Individualized Health (inHealth) Initiative. Evan D. Muse and Steven R. Steinhubl are supported by the NCATS/NIH of The Scripps Research Institute (UL1TR002550).Compliance with Ethical StandardsConflict of InterestShannon Wongvibulsin, Steven R. Steinhubl, and Evan D. Muse each declare no potential conflicts of interest.Seth S. Martin serves on the scientific advisory boards of Amgen, Sanofi, Regeneron, Esperion, Novo Nordisk, Quest Diagnostics, and Akcea Therapeutics and reports grants from Apple, Google, iHealth, Nokia, Maryland Innovation Initiative, American Heart Association, Aetna Foundation, P J Schafer Memorial Fund, and David and June Trone Family Foundation. Dr. Martin reports a patent pending filed by Johns Hopkins as a co-inventor for a method of LDL-C estimation. Dr. Martin is a founder of and holds equity in Corrie Health, which intends to further develop the platform. This arrangement has been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies.Human and Animal Rights and Informed ConsentThis article does not contain any studies with human or animal subjects performed by any of the authors.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 2018;137(12).Google Scholar2. Mokdad AH, Ballestros K, Echko M, Glenn S, Olsen HE, Mullany E, et al. The state of US health, 1990-2016. JAMA. 2018;319(14):1444–72.PubMedPubMedCentralCrossRefGoogle Scholar3. Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.PubMedPubMedCentralCrossRefGoogle Scholar4. Gambhir SS, Ge TJ, Vermesh O, Spitler R. Toward achieving precision health. Sci Transl Med. 2018;10(430):eaao3612.PubMedPubMedCentralCrossRefGoogle Scholar5. • Byambasuren O, Sanders S, Beller E, Glasziou P. Prescribable mHealth apps identified from an overview of systematic reviews. NPJ Digit Med. 2018;1(1):12 In an effort to identify “prescribable” health apps, this evaluation of systematic reviews illustrates the current gaps in evidence from high quality clinical studies.CrossRefGoogle Scholar6. • Noah B, Keller MS, Mosadeghi S, Stein L, Johl S, Delshad S, et al. Impact of remote patient monitoring on clinical outcomes: an updated meta-analysis of randomized controlled trials. Npj Digit Med. 2018;1(1):20172 Updated meta-analysis of clinical trials assessing wearable sensors highlighting the importance of behavior change and coaching for targeted interventions.CrossRefGoogle Scholar7. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.PubMedCrossRefGoogle Scholar8. Senecal C, Widmer RJ, Johnson MP, Lerman LO, Lerman A. Digital health intervention as an adjunct to a workplace health program in hypertension. J Am Soc Hypertens. 2018;12(10):695–702.PubMedCrossRefGoogle Scholar9. Mclean G, Band R, Saunderson K, Hanlon P, Murray E, Little P, et al. Digital interventions to promote self-management in adults with hypertension systematic review and meta-analysis. 2016.Google Scholar10. Lakshminarayan K, Westberg S, Northuis C, Fuller CC, Ikramuddin F, Ezzeddine M, et al. A mHealth-based care model for improving hypertension control in stroke survivors: pilot RCT. Contemp Clin Trials. 2018;70:24–34.PubMedCrossRefGoogle Scholar11. Green BB, Cook AJ, Ralston JD, Fishman PA, Catz SL, Carlson J, et al. Effectiveness of home blood pressure monitoring, web communication, and pharmacist care on hypertension control. JAMA. 2008;299(24):2857.PubMedPubMedCentralCrossRefGoogle Scholar12. Bosworth HB, Powers BJ, Olsen MK, McCant F, Grubber J, Smith V, et al. Home blood pressure management and improved blood pressure control. Arch Intern Med. 2011;171(13):1173.PubMedCrossRefGoogle Scholar13. • Morawski K, Ghazinouri R, Krumme A, Lauffenburger JC, Lu Z, Durfee E, et al. Association of a smartphone application with medication adherence and blood pressure control. JAMA Intern Med. 2018;178(6):802 In this study, individuals with hypertension received home blood pressure monitors and were randomized to the use of a novel smartphone application to promote mediation adherence. Despite these interventions, no improvement in blood pressure was achieved.PubMedPubMedCentralCrossRefGoogle Scholar14. Steinhubl SR, Muse ED, Barrett PM, Topol EJ. Off the cuff: rebooting blood pressure treatment. Lancet (London, England). 2016;388(10046):749.CrossRefGoogle Scholar15. Tucker KL, Sheppard JP, Stevens R, Bosworth HB, Bove A, Bray EP, et al. Self-monitoring of blood pressure in hypertension: A systematic review and individual patient data meta-analysis. Rahimi K, editor. PLOS Med. 2017;14(9):e1002389.PubMedPubMedCentralCrossRefGoogle Scholar16. • McManus RJ, Mant J, Franssen M, Nickless A, Schwartz C, Hodgkinson J, et al. Efficacy of self-monitored blood pressure, with or without telemonitoring, for titration of antihypertensive medication (TASMINH4): an unmasked randomised controlled trial. Lancet (London, England). 2018;391(10124):949–59 Pivotal trial for home blood pressure monitoring illustrating benefits over traditional (clinical) blood pressure monitoring in the ambulatory setting.CrossRefGoogle Scholar17. Margolis KL, Asche SE, Dehmer SP, Bergdall AR, Green BB, Sperl-Hillen JM, et al. Long-term outcomes of the effects of home blood pressure telemonitoring and pharmacist management on blood pressure among adults with uncontrolled hypertension. JAMA Netw Open. 2018;1(5):e181617.PubMedPubMedCentralCrossRefGoogle Scholar18. Bradbury K, Morton K, Band R, van Woezik A, Grist R, McManus RJ, et al. Using the Person-Based Approach to optimise a digital intervention for the management of hypertension. Aslani P, editor. PLoS One. 2018;13(5):e0196868.PubMedPubMedCentralCrossRefGoogle Scholar19. Chandrasekhar A, Kim C-S, Naji M, Natarajan K, Hahn J-O, Mukkamala R. Smartphone-based blood pressure monitoring via the oscillometric finger-pressing method. Sci Transl Med. 2018;10(431):eaap8674.PubMedPubMedCentralCrossRefGoogle Scholar20. Plante TB, Urrea B, MacFarlane ZT, Blumenthal RS, Miller ER, Appel LJ, et al. Validation of the instant blood pressure smartphone app. JAMA Intern Med. 2016;176(5):700–2.PubMedPubMedCentralCrossRefGoogle Scholar21. Pandya A, Asch DA, Volpp KG, Sy S, Troxel AB, Zhu J, et al. Cost-effectiveness of financial incentives for patients and physicians to manage low-density lipoprotein cholesterol levels. JAMA Netw Open. 2018;1(5):e182008.PubMedPubMedCentralCrossRefGoogle Scholar22. Näslund U, Ng N, Lundgren A, Fhärm E, Grönlund C, Johansson H, et al. Visualization of asymptomatic atherosclerotic disease for optimum cardiovascular prevention (VIPVIZA): a pragmatic, open-label, randomised controlled trial. Lancet (London, England). 2018;393(10167):133–42.CrossRefGoogle Scholar23. Asch DA, Troxel AB, Stewart WF, Sequist TD, Jones JB, Hirsch AG, et al. Effect of financial incentives to physicians, patients, or both on lipid levels. JAMA. 2015;314(18):1926–35.PubMedPubMedCentralCrossRefGoogle Scholar24. Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–58.PubMedPubMedCentralCrossRefGoogle Scholar25. Muse ED, Torkamani A, Topol EJ. When genomics goes digital. Lancet (London, England). 2018;391(10138):2405.CrossRefGoogle Scholar26. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219–24.PubMedPubMedCentralCrossRefGoogle Scholar27. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19(9):581–90.PubMedCrossRefGoogle Scholar28. Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob Heal. 2018;6(10):e1077–86.CrossRefGoogle Scholar29. Lee I-M, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet (London, England). 2012;380(9838):219–29.CrossRefGoogle Scholar30. Franklin NC. Technology to promote and increase physical activity in heart failure. Heart Fail Clin. 2015;11(1):173–82.PubMedCrossRefGoogle Scholar31. Murray CJL, Abraham J, Ali MK, Alvarado M, Atkinson C, Baddour LM, et al. The state of US health, 1990-2010. JAMA. 2013;310(6):591–608.PubMedCrossRefGoogle Scholar32. Martin SS, Feldman DI, Blumenthal RS, Jones SR, Post WS, McKibben RA, et al. mActive: a randomized clinical trial of an automated mHealth intervention for physical activity promotion. J Am Heart Assoc. 2015;4(11).Google Scholar33. Compernolle S, Vandelanotte C, Cardon G, De Bourdeaudhuij I, De Cocker K. Effectiveness of a web-based, computer-tailored, pedometer-based physical activity intervention for adults: a cluster randomized controlled trial. J Med Internet Res. 2015;17(2):e38.PubMedPubMedCentralCrossRefGoogle Scholar34. • Finkelstein EA, Haaland BA, Bilger M, Sahasranaman A, Sloan RA, Nang EEK, et al. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4(12):983–95 A large-scale evaluation of the use of positive incentive strategies (cash or charitable donations) to increase physical activity. Despite improvements in activity with either incentive, there were no changes in health outcomes.PubMedCrossRefGoogle Scholar35. Urrea B, Misra S, Plante TB, Kelli HM, Misra S, Blaha MJ, et al. Mobile health initiatives to improve outcomes in primary prevention of cardiovascular disease. Curr Treat Options Cardiovasc Med. 2015;17(12):59.PubMedCrossRefGoogle Scholar36. Conroy DE, Yang C-H, Maher JP. Behavior change techniques in top-ranked mobile apps for physical activity. Am J Prev Med. 2014;46(6):649–52.PubMedCrossRefGoogle Scholar37. Phillips SM, Cadmus-Bertram L, Rosenberg D, Buman MP, Lynch BM. Wearable technology and physical activity in chronic disease: opportunities and challenges. Am J Prev Med. 2018;54(1):144–50.PubMedCrossRefGoogle Scholar38. • Chokshi NP, Adusumalli S, Small DS, Morris A, Feingold J, Ha YP, et al. Loss-framed financial incentives and personalized goal-setting to increase physical activity among ischemic heart disease patients using wearable devices: the ACTIVE REWARD randomized trial. J Am Heart Assoc. 2018;7(12). In a CV high-risk cohort, this study investigated loss-framed incentives (in contrast to TRIPPA which used positive incentives) to promote healthy behaviors.Google Scholar39. Lim WK, Davila S, Teo JX, Yang C, Pua CJ, Blöcker C, et al. Beyond fitness tracking: The use of consumer-grade wearable data from normal volunteers in cardiovascular and lipidomics research. Kirkwood T, editor. PLOS Biol. 2018;16(2):e2004285.PubMedPubMedCentralCrossRefGoogle Scholar40. Burke LE, Ma J, Azar KMJ, Bennett GG, Peterson ED, Zheng Y, et al. Current science on consumer use of mobile health for cardiovascular disease prevention. Circulation. 2015;132(12):1157–213.PubMedCrossRefGoogle Scholar41. Martin CK, Miller AC, Thomas DM, Champagne CM, Han H, Church T. Efficacy of SmartLoss SM , a smartphone-based weight loss intervention: results from a randomized controlled trial. Obesity. 2015;23(5):935–42.PubMedCrossRefGoogle Scholar42. Dunford E, Trevena H, Goodsell C, Ng KH, Webster J, Millis A, et al. FoodSwitch: a mobile phone app to enable consumers to make healthier food choices and crowdsourcing of National Food Composition Data. JMIR mHealth uHealth. 2014;2(3):e37.PubMedPubMedCentralCrossRefGoogle Scholar43. Turner-McGrievy GM, Helander EE, Kaipainen K, Perez-Macias JM, Korhonen I. The use of crowdsourcing for dietary self-monitoring: crowdsourced ratings of food pictures are comparable to ratings by trained observers. J Am Med Inform Assoc. 2014;22(e1):e112–9.PubMedGoogle Scholar44. Zhang W, Yu Q, Siddiquie B, Divakaran A, Sawhney H. Snap-n-Eat. J Diabetes Sci Technol. 2015;9(3):525–33.PubMedPubMedCentralCrossRefGoogle Scholar45. O’Sullivan A, Henrick B, Dixon B, Barile D, Zivkovic A, Smilowitz J, et al. 21st century toolkit for optimizing population health through precision nutrition. Crit Rev Food Sci Nutr. 2017 Jul;5:1–12.Google Scholar46. Bashiardes S, Godneva A, Elinav E. Towards utilization of the human genome and microbiome for personalized nutrition. Curr Opin Biotechnol. 2018;51:57–63.PubMedCrossRefGoogle Scholar47. Spohr SA, Nandy R, Gandhiraj D, Vemulapalli A, Anne S, Walters ST. Efficacy of SMS text message interventions for smoking cessation: a meta-analysis. J Subst Abus Treat. 2015;56:1–10.CrossRefGoogle Scholar48. Abroms LC, Boal AL, Simmens SJ, Mendel JA, Windsor RA. A randomized trial of Text2Quit. Am J Prev Med. 2014 Sep;47(3):242–50.PubMedPubMedCentralCrossRefGoogle Scholar49. • Liao Y, Wu Q, Kelly BC, Zhang F, Tang Y-Y, Wang Q, et al. Effectiveness of a text-messaging-based smoking cessation intervention (“Happy Quit”) for smoking cessation in China: a randomized controlled trial. Degenhardt L, editor. PLOS Med. 2018;15(12):e1002713 This study, done exclusively in China, showed clinical efficacy of a cognitive behavioral therapy based text-messaging approach for smoking cessation.PubMedPubMedCentralCrossRefGoogle Scholar50. BinDhim NF, McGeechan K, Trevena L. Who uses smoking cessation apps? A feasibility study across three countries via smartphones. JMIR mhealth uhealth. 2014;2(1):e4.PubMedPubMedCentralCrossRefGoogle Scholar51. Vidrine DJ, Frank-Pearce SG, Vidrine JI, Tahay PD, Marani SK, Chen S, et al. Efficacy of mobile phone–delivered smoking cessation interventions for socioeconomically disadvantaged individuals. JAMA Intern Med. 2018.Google Scholar52. Struik LL, Baskerville NB. The role of Facebook in crush the crave, a mobile- and social media-based smoking cessation intervention: qualitative framework analysis of posts. J Med Internet Res. 2014;16(7):e170.PubMedPubMedCentralCrossRefGoogle Scholar53. Naughton F. Delivering “just-in-time” smoking cessation support via mobile phones: current knowledge and future directions: table 1. Nicotine Tob Res. 2016;19(3):ntw143.CrossRefGoogle Scholar54. Halpern SD, Harhay MO, Saulsgiver K, Brophy C, Troxel AB, Volpp KG. A pragmatic trial of e-cigarettes, incentives, and drugs for smoking cessation. N Engl J Med. 2018;378(24):2302–10.PubMedCrossRefGoogle Scholar55. Dalal HM, Doherty P, Taylor RS. Cardiac rehabilitation. BMJ. 2015;351:h5000.PubMedPubMedCentralCrossRefGoogle Scholar56. Varnfield M, Karunanithi M, Lee C-K, Honeyman E, Arnold D, Ding H, et al. Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: results from a randomised controlled trial. Heart. 2014;100(22):1770–9.PubMedCrossRefGoogle Scholar57. Lear SA. The delivery of cardiac rehabilitation using communications technologies: the “virtual” cardiac rehabilitation program. Can J Cardiol. 2018;34(10):S278–83.PubMedCrossRefGoogle Scholar58. Classick-Wallace MA, Bockol F, Blaber R. Feasibility of a smartphone-delivered, hybrid cardiac rehabilitation program. J Cardiopulm Rehabil Prev. 2017;37(5):363–85.CrossRefGoogle Scholar59. Gordon NF, Salmon RD, Wright BS, Faircloth GC, Reid KS, Gordon TL. Clinical effectiveness of lifestyle health coaching: case study of an evidence-based program. Am J Lifestyle Med. 2017;11(2):153–66.PubMedCrossRefGoogle Scholar60. Marvel FA, Wang J, Martin SS. Digital health innovation: a toolkit to navigate from concept to clinical testing. JMIR Cardio. 2018;2(1):e2.CrossRefGoogle Scholar61. • Volpp KG, Troxel AB, Mehta SJ, Norton L, Zhu J, Lim R, et al. Effect of electronic reminders, financial incentives, and social support on outcomes after myocardial infarction. JAMA Intern Med. 2017;177(8):1093 An inventive study that utilized a combination approach consisting of financial incentives, electronic pill bottles, and social support to promote medication adherence, yet resulting in no significant improvements. Highlights the complex issues regarding behavior change.PubMedPubMedCentralCrossRefGoogle Scholar62. McDermott MM, Spring B, Berger JS, Treat-Jacobson D, Conte MS, Creager MA, et al. Effect of a home-based exercise intervention of wearable technology and telephone coaching on walking performance in peripheral artery disease. JAMA. 2018;319(16):1665–76.PubMedPubMedCentralCrossRefGoogle Scholar63. Lee WC, Chavez YE, Baker T, Luce BR. Economic burden of heart failure: a summary of recent literature. Heart Lung. 33(6):362–71.CrossRefGoogle Scholar64. Del Gobbo LC, Kalantarian S, Imamura F, Lemaitre R, Siscovick DS, Psaty BM, et al. Contribution of major lifestyle risk factors for incident heart failure in older adults. JACC Hear Fail. 2015;3(7):520–8.CrossRefGoogle Scholar65. Honeyman E, Ding H, Varnfield M, Karunanithi M. Mobile health applications in cardiac care. Interv Cardiol. 2014;6(2):227–40.CrossRefGoogle Scholar66. Koehler F, Winkler S, Schieber M, Sechtem U, Stangl K, Böhm M, et al. Telemedicine in heart failure: pre-specified and exploratory subgroup analyses from the TIM-HF trial. Int J Cardiol. 2012;161(3):143–50.PubMedCrossRefGoogle Scholar67. Talmor G, Nguyen B, Keibel A, Temelkovska T, Saxon L. Use of software applications to improve medication adherence and achieve more integrated disease management in heart failure. Trends Cardiovasc Med. 2018;28(7):483–8.PubMedCrossRefGoogle Scholar68. Athilingam P, Jenkins B. Mobile phone apps to support heart failure self-care management: integrative review. JMIR Cardiol. 2018;2(1):e10057.CrossRefGoogle Scholar69. Alnosayan N, Chatterjee S, Alluhaidan A, Lee E, Houston FL. Design and usability of a heart failure mHealth system: a pilot study. JMIR Hum Factors. 2017;4(1):e9.PubMedPubMedCentralCrossRefGoogle Scholar70. De La I, Díez T, Garcia-Zapirain B, Méndez-Zorrilla A, López-Coronado M. Monitoring and follow-up of chronic heart failure: a literature review of eHealth applications 

--end--

声明:本文章由网友投稿作为教育分享用途,如有侵权原作者可通过邮件及时和我们联系删除:freemanzk@qq.com