ICML2019机器学习顶会接受论文列表!
【导读】2019 第36届机器学习国际会议2019年6月9日至15日 美国加州长滩会议中心本年度ICML共收到3400篇左右的投稿,经过严格筛选,共有773篇论文被录用。
https://icml.cc/Conferences/2019/AcceptedPapersInitial
Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for
Non-Convex Optimization
Thanh Huy Nguyen (Telecom ParisTech) · Umut Simsekli (Telecom
ParisTech) · Gaël RICHARD (Télécom ParisTech)
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural
Networks
Umut Simsekli (Telecom ParisTech) · Levent Sagun (CEA) · Mert
Gurbuzbalaban (Rutgers University)
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via
Optimal Transport and Diffusions
Antoine Liutkus (Inria) · Umut Simsekli (Telecom ParisTech) ·
Szymon Majewski (IMPAN) · Alain Durmus (ENS) · Fabian-Robert
Stöter (Inria)
Automatic Classifiers as Scientific Instruments: One Step Further
Away from Ground-Truth
Jacob Whitehill (Worcester Polytechnic Institute) · Anand
Ramakrishnan (Worcester Polytechnic Institute)
Decentralized Exploration in Multi-Armed Bandits
Raphael Feraud (Orange Labs) · REDA ALAMI (Orange Labs -
Paris Saclay University - INRIA) · Romain Laroche (Microsoft
Research)
Unsupervised Deep Learning by Neighbourhood Discovery
Jiabo Huang (Queen Mary University of London) · Qi Dong
(Queen Mary University of London) · Shaogang Gong (Queen Mary
University of London) · Xiatian Zhu (Vision Semantics
Limited)
Statistical Foundations of Virtual Democracy
Anson Kahng (Carnegie Mellon University) · Min Kyung Lee
(CMU) · Ritesh Noothigattu (Carnegie Mellon University) · Ariel
Procaccia (Carnegie Mellon University) · Christos-Alexandros
Psomas (Carnegie Mellon University)
DP-GP-LVM: A Bayesian Non-Parametric Model for Learning
Multivariate Dependency Structures
Andrew R Lawrence (University of Bath) · Carl Henrik Ek
(University of Bristol) · Neill Campbell (University of
Bath)
Complexity of Linear Regions in Deep Networks
Boris Hanin (Texas A&M) · David Rolnick (University of
Pennsylvania)
Linear-Complexity Data-Parallel Earth Mover's Distance
Approximations
Kubilay Atasu (IBM Research - Zurich) · Thomas Mittelholzer
(HSR Univ. Applied Sciences, Rapperswil, Switzerland)
Communication Constrained Inference and the Role of Shared
Randomness
Jayadev Acharya (Cornell University) · Clement Canonne
(Stanford University) · Himanshu Tyagi (IISC)
Communication Complexity in Locally Private Distribution
Estimation and Heavy Hitters
Jayadev Acharya (Cornell University) · Ziteng Sun (Cornell
University)
Domain Agnostic Learning with Disentangled Representations
Xingchao Peng (Boston University) · Zijun Huang (Columbia
University) · Ximeng Sun (Boston University) · Kate Saenko
(Boston University)
Sever: A Robust Meta-Algorithm for Stochastic Optimization
Ilias Diakonikolas (USC) · Gautam Kamath (MIT) · Daniel Kane
(UCSD) · Jerry Li (MIT) · Jacob Steinhardt (University of
California, Berkeley) · Alistair Stewart (University of Southern
California)
Learning Fast Algorithms for Linear Transforms Using Butterfly
Factorizations
Tri Dao (Stanford University) · Albert Gu (Stanford
University) · Matthew Eichhorn (University at Buffalo) · Atri
Rudra (University at Buffalo, SUNY) · Christopher Re
(Stanford)
Fast Incremental von Neumann Graph Entropy Computation: Theory,
Algorithm, and Applications
Pin-Yu Chen (IBM Research AI) · Lingfei Wu (IBM Research) ·
Sijia Liu (MIT-IBM Watson AI Lab) · Indika Rajapakse ()
Training Neural Networks with Local Error Signals
Arild Nøkland (Kongsberg Seatex) · Lars Hiller Eidnes
(None)
Batch Policy Learning under Constraints
Hoang Le (Caltech) · Cameron Voloshin (Caltech) · Yisong Yue
(Caltech)
Exploration Conscious Reinforcement Learning Revisited
Lior Shani (Technion) · Yonathan Efroni (Technion) · Shie
Mannor (Technion)
Temporal Gaussian Mixture Layer for Videos
AJ Piergiovanni (Indiana University) · Michael Ryoo (EgoVid /
Indiana University)
Probabilistic Neural Symbolic Models for Interpretable Visual
Question Answering
Ramakrishna Vedantam (Facebook AI Research) · Karan Desai
(Georgia Tech) · Stefan Lee (Georgia Institute of Technology) ·
Marcus Rohrbach (Facebook AI Research) · Dhruv Batra (Georgia
Institute of Technology / Facebook AI Research) · Devi Parikh
(Georgia Tech & Facebook AI Research)
Unifying Orthogonal Monte Carlo Methods
Krzysztof Choromanski (Google Brain Robotics) · Mark Rowland
(University of Cambridge) · Wenyu Chen (MIT) · Adrian Weller
(University of Cambridge, Alan Turing Institute)
TibGM: A Transferable and Information-Based Graphical Model
Approach for Reinforcement Learning
Tameem Adel (University of Cambridge) · Adrian Weller
(University of Cambridge, Alan Turing Institute)
SELFIE: Refurbishing Unclean Samples for Robust Deep Learning
Hwanjun Song (KAIST) · Minseok Kim (KAIST) · Jae-Gil Lee
(KAIST)
Statistics and Samples in Distributional Reinforcement
Learning
Mark Rowland (DeepMind) · Robert Dadashi (Google AI Residency
Program) · Saurabh Kumar (Google) · Remi Munos (DeepMind) · Marc
Bellemare (Google Brain) · Will Dabney (DeepMind)
Revisiting precision recall definition for generative
modeling
Loic Simon (GREYC ENSICAEN) · Ryan Webster (UniCaen) · Julien
Rabin (Unicaen)
Action Robust Reinforcement Learning and Applications in
Continuous Control
Chen Tessler (Technion) · Yonathan Efroni (Technion) · Shie
Mannor (Technion)
Anomaly Detection With Multiple-Hypotheses Predictions
Duc Tam Nguyen (University of Freiburg) · Zhongyu Lou (Bosch)
· Michael Klar (Bosch) · Thomas Brox (University of
Freiburg)
Band-limited Training and Inference for Convolutional Neural
Network
Adam Dziedzic (University of Chicago) · John Paparrizos
(University of Chicago) · Sanjay Krishnan (U Chicago) · Aaron
Elmore (University of Chicago) · Michael Franklin (University of
Chicago)
Greedy Layerwise Learning Can Scale To ImageNet
Eugene Belilovsky (Mila, University of Montreal) · Michael
Eickenberg (UC Berkeley) · Edouard Oyallon (CentraleSupélec)
Monge blunts Bayes: Hardness Results for Adversarial Training
Zac Cranko (ANU) · Aditya Menon (Google Research) · Richard
Nock (Data61, The Australian National University and the
University of Sydney) · Cheng Soon Ong (Data61 and ANU) · Zhan
Shi (University of Illinois at Chicago) · Christian Walder
(Data61, the Australian National University)
Adaptive Monte Carlo Multiple Testing via Multi-Armed Bandits
Martin Zhang (Stanford University) · James Zou (Stanford) ·
David Tse (Stanford University)
Submodular Cost Submodular Cover with an Approximate Oracle
Victoria Crawford (University of Florida) · Alan Kuhnle
(Florida State University) · My T Thai (University of
Florida)
Lossless or Quantized Boosting with Integer Arithmetic
Richard Nock (Data61, The Australian National University and
the University of Sydney) · Robert C Williamson (ANU)
Understanding and Utilizing Deep Neural Networks Trained with
Noisy Labels
Pengfei Chen (The Chinese University of Hong Kong) · Ben Ben
Liao (Tencent) · Guangyong Chen (Tencent) · Shengyu Zhang
(Tencent; The Chinese University of Hong Kong)
HexaGAN: Generative Adversarial Nets for Real World
Classification
Uiwon Hwang (Seoul National University) · Dahuin Jung (Seoul
National University) · Sungroh Yoon (Seoul National
University)
Neural Collaborative Subspace Clustering
Tong Zhang (The Australian National University) · Pan Ji (NEC
Laboratories America) · Mehrtash Harandi (Monash University) ·
Wenbing Huang (Tencent AI Lab) · HONGDONG LI (Australian National
University, Australia)
Fast Direct Search in an Optimally Compressed Continuous Target
Space for Efficient Multi-Label Active Learning
weishi shi (Rochester Institute of Technology) · Qi Yu
(Rochester Institute of Technology)
Improved Convergence
for ℓ1ℓ1 and ℓ∞ℓ∞ Regression via Iteratively
Reweighted Least Squares
Alina Ene (Boston University) · Adrian Vladu (Boston
University)
Flat Metric Minimization with Applications in Generative
Modeling
Thomas Möllenhoff (TU Munich) · Daniel Cremers (TU
Munich)
Learning to Collaborate in Markov Decision Processes
Goran Radanovic (Harvard University) · Rati Devidze (Max
Planck Institute for Software Systems) · David Parkes (Harvard
University) · Adish Singla (Max Planck Institute (MPI-SWS))
Fast and flexible inference of joint distributions from their
marginals
Charles Frogner (MIT) · Tomaso Poggio (Massachusetts
Institute of Technology)
Learning Dependency Structures for Weak Supervision Models
Paroma Varma (Stanford University) · Frederic Sala (Stanford)
· Ann He (Stanford University) · Alexander J Ratner (Stanford
University) · Christopher Re (Stanford)
SWALP : Stochastic Weight Averaging in Low Precision Training
Guandao Yang (Cornell University) · Tianyi Zhang (Cornell
University) · Polina Kirichenko (Cornell) · Junwen Bai (Cornell)
· Andrew Wilson (Cornell University) · Chris De Sa (Cornell)
Neural Separation of Observed and Unobserved Distributions
Tavi Halperin (Hebrew University of Jerusalem) · Ariel Ephrat
(HUJI) · Yedid Hoshen ()
Better generalization with less data using robust gradient
descent
Matthew J Holland (Osaka University) · Kazushi Ikeda (Nara
Institute of Science and Technology)
Learning to Exploit Long-term Relational Dependencies in
Knowledge Graphs
Lingbing Guo (Nanjing University) · Zequn Sun (Nanjing
University) · Wei Hu (Nanjing University)
Kernel Mean Matching for Content Addressability of GANs
Wittawat Jitkrittum (Max Planck Institute for Intelligent
Systems) · Patsorn Sangkloy (Georgia Institution of Technology) ·
Muhammad Waleed Gondal (Max Planck Institute for Intelligent
Systems) · Amit Raj (Georgia Institute of Technology) · James
Hays (Georgia Institute of Technology, USA) · Bernhard Schölkopf
(MPI for Intelligent Systems Tübingen, Germany)
Sublinear Sampling for Determinantal Point Processes
Jennifer Gillenwater (Google Research NYC) · Alex Kulesza
(Google) · Zelda Mariet (MIT) · Sergei Vassilvitskii
(Google)
Social Influence as Intrinsic Motivation for Multi-Agent Deep
Reinforcement Learning
Natasha Jaques (MIT) · Angeliki Lazaridou (DeepMind) · Edward
Hughes (DeepMind) · Caglar Gulcehre (DeepMind) · Pedro Ortega
(DeepMind) · DJ Strouse (Princeton University) · Joel Z Leibo
(DeepMind) · Nando de Freitas (DeepMind)
Greedy Sequential Subset Selection via Sequential Facility
Location
Ehsan Elhamifar (Northeastern University)
TarMAC: Targeted Multi-Agent Communication
Abhishek Das (Georgia Tech) · Theophile Gervet (Carnegie
Mellon University) · Joshua Romoff (McGill University) · Dhruv
Batra (Georgia Institute of Technology / Facebook AI Research) ·
Devi Parikh (Georgia Tech & Facebook AI Research) · Michael
Rabbat (Facebook) · Joelle Pineau (Facebook)
A Kernel Theory of Modern Data Augmentation
Tri Dao (Stanford University) · Albert Gu (Stanford
University) · Alexander J Ratner (Stanford University) · Virginia
Smith (Carnegie Mellon University) · Chris De Sa (Cornell) ·
Christopher Re (Stanford)
Geometry Aware Convolutional Filters for Omnidirectional Images
Representation
Renata Khasanova (Ecole Polytechnique Federale de Lausanne
(EPFL)) · Pascal Frossard (EPFL)
Convolutional Poisson Gamma Belief Network
CHAOJIE WANG (XIDIAN UNIVERSITY) · Bo Chen (School of
Electronic Engineering, Xidian University) · Sucheng Xiao (Xidian
University) · Mingyuan Zhou (University of Texas at Austin)
Improving Adversarial Robustness via Promoting Ensemble
Diversity
Tianyu Pang (Tsinghua University) · Kun Xu (Tsinghua
University) · Chao Du (Tsinghua University) · Ning Chen () · Jun
Zhu (Tsinghua University)
Faster Stochastic Alternating Direction Method of Multipliers for
Nonconvex Optimization
Feihu Huang (University of Pittsburgh) · Songcan Chen
(Nanjing University of Aeronautics and Astronautics) · Heng Huang
(University of Pittsburgh)
Myopic Posterior Sampling for Adaptive Goal Oriented Design of
Experiments
Kirthevasan Kandasamy (Carnegie Mellon University) · Willie
Neiswanger (CMU) · Reed Zhang (Carnegie Mellon University) ·
Akshay Krishnamurthy (Microsoft Research) · Jeff Schneider
(Uber/CMU) · Barnabás Póczos (CMU)
Neural Inverse Knitting: From Images to Manufacturing
Instructions
Alexandre Kaspar (MIT CSAIL) · Tae-Hyun Oh (MIT CSAIL) ·
Liane Makatura (MIT) · Petr Kellnhofer (MIT) · Wojciech Matusik
(MIT)
Differentially Private Empirical Risk Minimization with
Non-convex Loss Functions
Di Wang (State University of New York at Buffalo) · Changyou
Chen (SUNY Buffalo) · Jinhui Xu (SUNY Buffalo)
Bayesian Generative Active Deep Learning
Toan Tran (University of Adelaide) · Thanh-Toan Do (The
University of Liverpool) · Ian Reid ("University of Adelaide,
Australia") · Gustavo Carneiro (University of Adelaide)
Understanding the Origins of Bias in Word Embeddings
Marc-Etienne Brunet (University of Toronto) · Colleen
Alkalay-Houlihan (University of Toronto) · Ashton Anderson
(University of Toronto) · Richard Zemel (Vector Institute)
GDPP: Learning Diverse Generations using Determinantal Point
Processes
Mohamed Elfeki (CRCV) · Camille Couprie (FAIR) · Morgane
Riviere (Facebook Artificial Intelligence Research) · Mohamed
Elhoseiny (KAUST and Baidu SVAIL)
Multi-Agent Adversarial Inverse Reinforcement Learning
Lantao Yu (Stanford University) · Jiaming Song (Stanford) ·
Stefano Ermon (Stanford University)
Differentiable Learning to Learn to Normalize
Ping Luo (The University of Hong Kong) · Peng Zhanglin
(SenseTime) · Shao Wenqi (CUHK) · Zhang ruimao (cuhk) · Ren
jiamin (sensetime) · Wu lingyun (sensetime)
Learning Distance for Sequences by Learning a Ground Metric
Bing Su (Institute of Software, Chinese Academy of Sciences)
· Ying Wu (Northwestern University)
Classification from Positive, Unlabeled and Biased Negative
Data
Yu-Guan Hsieh (École normale supérieure) · Gang Niu (RIKEN) ·
Masashi Sugiyama (RIKEN / The University of Tokyo)
Improved Parallel Algorithms for Density-Based Network
Clustering
Mohsen Ghaffari (ETH Zurich) · Silvio Lattanzi (Google
Zurich) · Slobodan Mitrović (MIT)
Hierarchically Structured Meta-learning
Huaxiu Yao (Pennsylvania State University) · Ying WEI
(Tencent AI Lab) · Junzhou Huang (University of Texas at
Arlington / Tencent AI Lab) · Zhenhui (Jessie) Li (Penn State
University)
Nonlinear Distributional Gradient Temporal-Difference
Learning
chao qu (Ant Financial Service Group) · Shie Mannor
(Technion) · Huan Xu (Georgia Tech)
Differentiable Linearized ADMM
Xingyu Xie (Peking Unversity) · Jianlong Wu (Peking
University) · Guangcan Liu (Nanjing University of Information
Science and Technology) · Zhisheng Zhong (Peking University) ·
Zhouchen Lin (Peking University)
Bridging Theory and Algorithm for Domain Adaptation
Yuchen Zhang (Tsinghua University) · Tianle Liu (Tsinghua
University) · Mingsheng Long (Tsinghua University) · Michael
Jordan (UC Berkeley)
Sublinear Time Nearest Neighbor Search over Generalized Weighted
Space
Yifan Lei (National University of Singapore) · Qiang Huang
(National University of Singapore) · Mohan Kankanhalli (National
University of Singapore,) · Anthony Tung (NUS)
Imitation Learning from Imperfect Demonstration
Yueh-Hua Wu (National Taiwan University) · Nontawat
Charoenphakdee (The University of Tokyo / RIKEN) · Han Bao (The
University of Tokyo / RIKEN) · Voot Tangkaratt (RIKEN AIP) ·
Masashi Sugiyama (RIKEN / The University of Tokyo)
Adversarial Online Learning with noise
ALON RESLER (Tel Aviv University) · Yishay Mansour (Google
and Tel Aviv University)
Near optimal finite time identification of arbitrary linear
dynamical systems
Tuhin Sarkar (MIT) · Alexander Rakhlin (MIT)
Bayesian Joint Spike-and-Slab Graphical Lasso
Zehang Li (Yale School of Public Health) · Tyler Mccormick
(University of Washington) · Samuel Clark (The Ohio State
University)
Dynamic Weights in Multi-Objective Deep Reinforcement
Learning
Axel Abels (Université Libre de Bruxelles) · Diederik Roijers
(VUB) · Tom Lenaerts (Vrije Universiteit Brussel) · Ann Nowé
(Vrije Universiteit Brussel) · Denis Steckelmacher (Vrije
Universiteit Brussel)
The Wasserstein Transform
Facundo Memoli (Ohio State University) · Zane Smith
(University of Minnesota) · Zhengchao Wan (The Ohio State
University)
Sum-of-Squares Polynomial Flow
Priyank Jaini (University of Waterloo, Vector Institute) ·
Kira A. Selby (University of Waterloo) · Yaoliang Yu (University
of Waterloo)
Graphical-model based estimation and inference for differential
privacy
Ryan McKenna (UMass Amherst) · Daniel Sheldon (University of
Massachusetts Amherst) · Gerome Miklau (University of
Massachusetts, Amherst)
Control Regularization for Reduced Variance Reinforcement
Learning
Richard Cheng (California Institute of Technology) · Abhinav
Verma (Rice University) · Gabor Orosz (University of Michigan) ·
Swarat Chaudhuri (Rice University) · Yisong Yue (Caltech) · Joel
Burdick (Caltech)
Efficient Off-Policy Meta-Reinforcement Learning via
Probabilistic Context Variables
Kate Rakelly (UC Berkeley) · Aurick Zhou (UC Berkeley) ·
Chelsea Finn (Stanford, Google, UC Berkeley) · Sergey Levine
(Berkeley) · Deirdre Quillen (UC Berkeley)
On Sparse Linear Regression in the Local Differential Privacy
Model
Di Wang (State University of New York at Buffalo) · Jinhui Xu
(SUNY Buffalo)
Rethinking Lossy Compression: The Rate-Distortion-Perception
Tradeoff
Yochai Blau (Technion) · Tomer Michaeli (Technion)
Transferable Adversarial Training: A General Approach to Adapting
Deep Classifiers
Hong Liu (Tsinghua University) · Mingsheng Long (Tsinghua
University) · Jianmin Wang (Tsinghua University) · Michael Jordan
(UC Berkeley)
Adaptive Neural Trees
Ryutaro Tanno (University College London) · Kai Arulkumaran
(Imperial College London) · Daniel Alexander (University College
London) · Antonio Criminisi (Microsoft) · Aditya Nori (Microsoft
Research Cambridge)
A Recurrent Neural Cascade-based Model for Continuous-Time
Diffusion
Sylvain Lamprier (LIP6 - Sorbonne Universités)
Learning Efficient Feature Augmentation with Non-local Relations
for Visual Recognition
Songyang Zhang (ShanghaiTech University) · Xuming He
(ShanghaiTech University) · Shipeng Yan (ShanghaiTech
University)
Learning Structured Decision Problems with Unawareness
Craig Innes (University of Edinburgh) · Alex Lascarides
(University of Edinburgh)
Improving model selection by employing the test data
Max Westphal (University of Bremen) · Werner Brannath
(University of Bremen)
CapsAndRuns: An Improved Method for Approximately Optimal
Algorithm Configuration
Gellért Weisz (DeepMind) · Andras Gyorgy (DeepMind) · Csaba
Szepesvari (DeepMind/University of Alberta)
Dead-ends and Secure Exploration in Reinforcement Learning
Mehdi Fatemi (Microsoft Research) · Shikhar Sharma (Microsoft
Research) · Harm van Seijen (Microsoft Research) · Samira
Ebrahimi Kahou (Microsoft Research)
The information-theoretic value of unlabeled data in
semi-supervised learning
Alexander Golovnev (Harvard) · David Pal (Expedia) · Balazs
Szorenyi (Yahoo Research)
Nearest neighbor and kernel survival analysis: Nonasymptotic
error bounds and strong consistency rates
George Chen (Carnegie Mellon University)
Recursive Sketches for Modular Deep Learning
Badih Ghazi (Google) · Rina Panigrahy (Google) · Joshua R.
Wang (Google)
Off-Policy Deep Reinforcement Learning without Exploration
Scott Fujimoto (McGill University) · David Meger (McGill
University) · Doina Precup (McGill University / DeepMind)
GEOMetrics: Exploiting Geometric Structure for Graph-Encoded
Objects
Edward Smith (McGill University) · Adriana Romero (FAIR) ·
Scott Fujimoto (McGill University) · David Meger (McGill
University)
Population Random Measure Embedding
Aonan Zhang (Columbia University) · John Paisley (Columbia
University)
Learning to Prove Theorems via Interacting with Proof
Assistants
Kaiyu Yang (Princeton University) · Jia Deng (Princeton
University)
Training Well-Generalizing Classifiers for Fairness Metrics and
Other Data-Dependent Constraints
Andrew Cotter (Google AI) · Maya Gupta (Google) · Heinrich
Jiang (Google Research) · Nati Srebro (Toyota Technological
Institute at Chicago) · Karthik Sridharan (Cornell University) ·
Serena Wang (Google) · Blake Woodworth (TTI-Chicago) · Seungil
You (Kakao Mobility)
Defending Against Saddle Point Attack in Byzantine-Robust
Distributed Learning
Dong Yin (UC Berkeley) · Yudong Chen (Cornell University) ·
Kannan Ramchandran (UC Berkeley) · Peter Bartlett (UC
Berkeley)
Rethinking Model Scaling for Deep Convolutional Neural
Networks
Mingxing Tan (Google Brain) · Quoc Le (Google Brain)
NATTACK: Improved Black-Box Adversarial Attack with Normal
Distributions
Yandong li (University of Central Florida) · Lijun Li
(Beihang University) · Liqiang Wang (University of Central
Florida) · Tong Zhang (Tencent) · Boqing Gong (Google)
Greedy Orthogonal Pivoting for Non-Negative Matrix
Factorization
Kai Zhang (Temple University) · Sheng Zhang (Temple
University) · Jun Liu (Infinia ML Inc.) · Jun Wang (Alibaba) ·
Jie Zhang (Fudan University)
Population Based Augmentation: Efficient Learning of Augmentation
Policy Schedules
Daniel Ho (UC Berkeley) · Eric Liang (UC Berkeley) · Xi Chen
(UC Berkeley) · Ion Stoica (UC Berkeley) · Pieter Abbeel (UC
Berkeley)
Weak Detection of Signal in the Spiked Wigner Model
Hye Won Chung (KAIST) · Ji Oon Lee (KAIST)
Compressing Gradient Optimizers via Count-Sketches
Ryan Spring (Rice University) · Anastasios Kyrillidis (Rice
University) · Vijai Mohan () · Anshumali Shrivastava (Rice
University)
Variational Laplace Autoencoders
Yookoon Park (Seoul National University) · Chris Kim (Seoul
National University) · Gunhee Kim (Seoul National
University)
New results on information theoretic clustering
Ferdinando Cicalese (University of Verona) · Eduardo Laber
(PUC-RIO) · Lucas Murtinho (PUC-RJ)
On Medians of (Randomized) Pairwise Means
Stephan Clemencon (Telecom ParisTech) · Pierre Laforgue
(Télécom ParisTech) · Patrice Bertail (Université Paris
Nanterre)
Molecular Hypergraph Grammar with Its Application to Molecular
Optimization
Hiroshi Kajino (MIT-IBM Watson AI Lab / IBM Research)
Dimension-Wise Importance Sampling Weight Clipping for
Sample-Efficient Reinforcement Learning
Seungyul Han (KAIST) · Youngchul Sung (KAIST)
Bandit Multiclass Linear Classification: Efficient Algorithms for
the Separable Case
Alina Beygelzimer (Yahoo Research) · David Pal (Expedia) ·
Balazs Szorenyi (Yahoo Research) · Devanathan Thiruvenkatachari
(New York University) · Chen-Yu Wei (University of Southern
California) · Chicheng Zhang (Microsoft Research)
Warm-starting Contextual Bandits: Robustly Combining Supervised
and Bandit Feedback
Chicheng Zhang (Microsoft Research) · Alekh Agarwal
(Microsoft Research) · Hal Daume (Microsoft Research) · John
Langford (Microsoft Research) · Sahand Negahban (YALE)
Weakly-Supervised Temporal Localization via Occurrence Count
Learning
Julien Schroeter (Cardiff University) · Kirill Sidorov
(Cardiff University) · David Marshall (Cardiff University)
Imputing Missing Events in Continuous-Time Event Streams
Hongyuan Mei (Johns Hopkins University) · Guanghui Qin
(Peking University) · Jason Eisner (Johns Hopkins
University)
Graph U-Nets
Hongyang Gao (Texas A&M University) · Shuiwang Ji (Texas
A&M University)
First-Order Algorithms Converge Faster
than O(1/k)O(1/k) on Convex Problems
Ching-pei Lee (University of Wisconsin-Madison) · Stephen
Wright (University of Wisconsin-Madison)
Composing Entropic Policies using Divergence Correction
Jonathan Hunt (DeepMind) · Andre Barreto (DeepMind) · Timothy
Lillicrap (Google DeepMind) · Nicolas Heess (DeepMind)
Online Convex Optimization in Adversarial Markov Decision
Processes
Aviv Rosenberg (Tell Aviv University) · Yishay Mansour
(Google and Tel Aviv University)
On the Convergence and Robustness of Adversarial Training
Yisen Wang (Tsinghua University) · Xingjun Ma (The University
of Melbourne) · James Bailey (The University of Melbourne) ·
Jinfeng Yi (JD AI Research) · Bowen Zhou (JD) · Quanquan Gu
(University of California, Los Angeles)
Safe Policy Improvement with Baseline Bootstrapping
Romain Laroche (Microsoft Research) · Paul TRICHELAIR (Mila -
Quebec AI Institute/McGill University) · Remi Tachet des Combes
(Microsoft Research Montreal)
Variational Inference for sparse network reconstruction from
count data
Julien Chiquet (INRA / AgroParisTech / Paris Saclay) ·
Stephane Robin (INRA / AgroParisTech / Paris Saclay) · Mahendra
Mariadassou (INRA)
Simplifying Graph Convolutional Networks
Felix Wu (Cornell University) · Amauri Souza (Cornell
University) · Tianyi Zhang (Cornell University) · Christopher
Fifty (Cornell University) · Tao Yu (Shanghai Jiao Tong
University) · Kilian Weinberger (Cornell University)
Fairness without Harm: Decoupled Classifiers with Preference
Guarantees
Berk Ustun (Harvard University) · Yang Liu (UCSC) · David
Parkes (Harvard University)
Non-Parametric Priors For Generative Adversarial Networks
Rajhans Singh (Arizona State University) · Pavan Turaga
(Arizona State University) · Suren Jayasuriya (Arizona State
University) · Ravi Garg (Intel Corporation) · Martin Braun (Intel
Corporation)
Stochastic Blockmodels meet Graph Neural Networks
Nikhil Mehta (Duke University) · Lawrence Carin (Duke) ·
Piyush Rai (IIT Kanpur)
Learning Generative Models across Incomparable Spaces
Charlotte Bunne (ETH) · David Alvarez-Melis (MIT) · Andreas
Krause (ETH Zurich) · Stefanie Jegelka (MIT)
Rademacher Complexity for Adversarially Robust Generalization
Dong Yin (UC Berkeley) · Kannan Ramchandran (UC Berkeley) ·
Peter Bartlett (UC Berkeley)
Accelerated Flow for Probability Distributions
Amirhossein Taghvaei (University of Illinois at
Urbana-Champaign) · Prashant Mehta (University of Illinois at
Urbana-CHampaign)
Generalized Majorization-Minimization
Sobhan Naderi Parizi (Google Inc.) · Kun He (Facebook Reality
Labs) · Reza Aghajani (University of California San Diego) · Stan
Sclaroff (Boston University) · Pedro Felzenszwalb (Brown
University)
Improved Zeroth-Order Variance Reduced Algorithms and Analysis
for Nonconvex Optimization
Kaiyi Ji (The Ohio State University) · Zhe Wang (Ohio State
University) · Yi Zhou (Duke University) · Yingbin LIANG (The Ohio
State University)
Parameter efficient training of deep convolutional neural
networks by dynamic sparse reparameterization
Hesham Mostafa (Intel Corporation) · Xin Wang (Cerebras
Systems)
Metropolis-Hastings Generative Adversarial Networks
Ryan Turner (Uber AI Labs) · Jane Hung (Uber) · Eric Frank
(Uber AI Labs) · Yunus Saatchi (Uber AI Labs) · Jason Yosinski
(Uber Labs)
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed
Bandits
Branislav Kveton (Google Research) · Csaba Szepesvari
(DeepMind/University of Alberta) · Sharan Vaswani (Mila,
University of Montreal) · Zheng Wen (Adobe Research) · Tor
Lattimore (DeepMind) · Mohammad Ghavamzadeh (Facebook AI
Research)
Direct Uncertainty Prediction for Medical Second Opinions
Maithra Raghu (Cornell University / Google Brain) · Katy
Blumer (Google) · Rory sayres (Google) · Ziad Obermeyer (UC
Berkeley School of Public Health) · Bobby Kleinberg (Cornell) ·
Sendhil Mullainathan (Harvard University) · Jon Kleinberg
(Cornell University)
Contextual Multi-armed Bandit Algorithm for Semiparametric Reward
Model
Gi-Soo Kim (Seoul National University) · Myunghee Cho Paik
(Seoul National University)
On Symmetric Losses for Learning from Corrupted Labels
Nontawat Charoenphakdee (The University of Tokyo / RIKEN) ·
Jongyeong Lee (The University of Tokyo/RIKEN) · Masashi Sugiyama
(RIKEN / The University of Tokyo)
Lipschitz Generative Adversarial Nets
Zhiming Zhou (SJTU) · Jiadong Liang (Peking University) ·
Yuxuan Song (Shanghai Jiao Tong Univesity) · Lantao Yu (Stanford
University) · Hongwei Wang (Shanghai Jiao Tong University) ·
Weinan Zhang (Shanghai Jiao Tong University) · Yong Yu (Shanghai
Jiao Tong University) · Zhihua Zhang (Peking University)
Spectral Clustering of Signed Graphs via Matrix Power Means
Pedro Mercado (Saarland University / University of Tubingen)
· Matthias Hein (University of Tübingen) · Francesco Tudisco
(University of Strathclyde)
Overparameterized Nonlinear Learning: Gradient Descent Takes the
Shortest Path?
Samet Oymak (University of California, Riverside) · Mahdi
Soltanolkotabi (University of Southern California)
POPCORN: Certifying Robustness of Recurrent Neural Networks
CHING-YUN KO (The University of Hong Kong) · Zhaoyang Lyu
(The Chinese University of Hong Kong) · Tsui-Wei Weng (MIT) ·
Luca Daniel (Massachusetts Institute of Technology) · Ngai Wong
(The University of Hong Kong) · Dahua Lin (The Chinese University
of Hong Kong)
MixHop: Higher-Order Graph Convolutional Architectures via
Sparsified Neighborhood Mixing
Sami Abu-El-Haija (USC Information Sciences Institute) ·
Bryan Perozzi (Google AI) · Amol Kapoor (Google Research) ·
Nazanin Alipourfard (University of Southern California) ·
Kristina Lerman (ISI, University of Southern California) · Hrayr
Harutyunyan (University of Southern California) · Greg Ver Steeg
(University of Southern California) · Aram Galstyan (USC
ISI)
Static Automatic Batching In TensorFlow
Ashish Agarwal (Google Brain)
State-Regularized Recurrent Neural Networks
Cheng Wang (NEC Laboratories Europe) · Mathias Niepert (NEC
Laboratories Europe)
Online Adaptive Principal Component Analysis and Its
extensions
Jianjun Yuan (University of Minnesota) · Andrew Lamperski
(University of Minnesota)
Passed & Spurious: analysing descent algorithms and local
minima in spiked matrix-tensor model
Stefano Sarao Mannelli (Institut de Physique Théorique) ·
Florent Krzakala () · Pierfrancesco Urbani (Institut de Physique
Théorique) · Lenka Zdeborova (CEA Saclay)
Cheap Orthogonal Constraints in Neural Networks: A Simple
Parametrization of the Orthogonal and Unitary Group
Mario Lezcano Casado (Univeristy of Oxford) · David
Martínez-Rubio (University of Oxford)
Towards Accurate Model Selection in Deep Unsupervised Domain
Adaptation
Kaichao You (Tsinghua University) · Ximei Wang (Tsinghua
University) · Mingsheng Long (Tsinghua University) · Michael
Jordan (UC Berkeley)
RaFM: Rank-Aware Factorization Machines
Xiaoshuang Chen (Tsinghua Univerisity) · Yin Zheng (WeChat
Search Application Department, Tencent) · Jiaxing Wang (Institute
of Automation, Chinese Academy of Sciences) · Wenye Ma (Tencent)
· Junzhou Huang (University of Texas at Arlington / Tencent AI
Lab)
Overcoming multi-model forgetting
Yassine Benyahia (IPROVA) · Kaicheng Yu (EPFL) · Kamil
Bennani-Smires (Swisscom) · Martin Jaggi (EPFL) · Anthony C.
Davison (EPFL) · Mathieu Salzmann (EPFL) · Claudiu Musat
(Swisscom)
Simple Stochastic Gradient Methods for Non-Smooth Non-Convex
Regularized Optimization
Michael Metel (RIKEN Center for Advanced Intelligence
Project) · Akiko Takeda (The University of Tokyo / RIKEN)
LegoNet: Efficient Convolutional Neural Networks with Lego
Filters
Zhaohui Yang (Peking University) · Yunhe Wang (Peking
University) · Chuanjian Liu (Huawei Noah's Ark Lab) · Hanting
Chen (Peking University) · Chunjing Xu (Huawei Noah's Ark Lab) ·
Boxin Shi (Peking University) · Chao Xu (Peking University) ·
Chang Xu (University of Sydney)
--end--
声明:本文章由网友投稿作为教育分享用途,如有侵权原作者可通过邮件及时和我们联系删除:freemanzk@qq.com